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1 Introduction

Because �uid dynamic equations are di¢ cult to solve, it is common to study the performance
of scaled down models.[1] For this technique to be e¤ective, we need to relate the magnitudes
occurring in these tests to the corresponding magnitudes in the full scale system. In this note
we �rst review the general principle of dynamic similarity. We then derive certain scale-
invariant parameters of dynamically similar turbines. These scale-invariant parameters are
used to present model test results in a form which facilitates predicting the performance of
geometrically similar turbines operating over a range of pressures and shaft speeds.

2 Similar Systems

2.1 Geometric Similarity

When we speak of scale models we immediately think of mechanical systems with the same
shape but di¤erent size. More speci�cally at any instant there is a correspondence between
points in system A and points in system B and scale factor sL such that if x1 and x2 are
two points in system A and x01 and x

0
2 are the corresponding points in system B then

jx02 � x01j = sL jx2 � x1j : (1)

In this case we say that system A is geometrically similar to system B.

Given the scale factor sL for lengths, the scale factor for areas will be s2L and the scale factor
for volumes will be s3L. We say that length, area, and volume are magnitudes with di¤erent
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D runner diameter (L)
g gravitational acceleration (LT�2)
H turbine net head (L)
L length dimension
M mass dimension
m mass (M)
N shaft speed (RPM)
N11 unit speed
P power (ML2T�3)
P11 unit power
p pressure di¤erence across turbine (ML�1T�2)
Q turbine discharge (L3T�1)
Q11 unit discharge
sL length scale factor (dimensionless)
sM mass scale factor (dimensionless)
sT time scale factor (dimensionless)
T time dimension
t time (T )
v velocity (LT�1)
jx1 � x2j distance between points x1 and x2 (L)
� e¢ ciency (dimensionless)
�1 speed parameter D! (p=�)�1=2 (dimensionless)
�2 discharge parameter QD�2 (p=�)�1=2 (dimensionless)
�3 power parameter P��1D�2 (p=�)�3=2 (dimensionless)
� �uid density (ML�3)
! angular shaft velocity (T�1)

Table 1: Nomenclature for turbine characteristics.

dimensions and denote these dimensions by L, L2, and L3. In discussing scale factors for
di¤erent dimensions, we assume that the same units are used in both systems to measure
magnitudes of the same dimension. No other assumptions are made about the units used for
lengths, areas, and volumes. We can measure lengths in feet, areas in acres, and volumes in
cubic meters and, given that lengths are scaled by sL, areas will be scaled by s2L and volumes
will be scaled by s3L.

2.2 Kinematic Similarity

More generally, the corresponding points of two systems may be functions of time. In this
case we say that systemA is kinematically similar to systemB if there are two scale factors sL
and sT such that for any two points x1 (t) and x2 (t) in system A at time t and corresponding
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points x01 (t
0) and x02 (t

0) in system B at the corresponding time t0

jx02 (t01)� x01 (t01)j = sL jx2 (t1)� x1 (t1)j (2)

jx02 (t02)� x01 (t02)j = sL jx2 (t2)� x1 (t2)j (3)

jt02 � t01j = sT jt2 � t1j (4)

for any two times t1 and t2 in system A and corresponding times t01 and t
0
2 in system B.

Including time introduces new kinds of magnitudes. For instance, if a particle in system A
moves from point x1 to point x2 between times t1 and t2, it will have an average velocity

jvj =
����x2 (t1)� x1 (t1)t2 � t1

���� . (5)

The magnitude of the corresponding velocity v0 in system B will be

jv0j =
����x02 (t01)� x01 (t01)t02 � t01

���� (6)

=
sL jx2 (t1)� x1 (t1)j

sT jt2 � t1j
(7)

= sLs
�1
T

����x2 (t1)� x1 (t1)t2 � t1

���� (8)

= sLs
�1
T jvj . (9)

Again, we assume the same units are used in both systems to measure magnitudes of the
same dimension. The scale factor for velocities re�ects the fact that the measured velocity
is proportional to the distance and inversely proportional to the time interval. We say that
velocity has dimension LT�1: In a similar fashion, acceleration has dimension LT�2 and the
scale factor for accelerations is sLs�2T .

2.3 Dynamic Similarity

An additional basic dimension is required to complete the classi�cation of magnitudes in
mechanical systems. The third basic dimension can be either force or mass. Here we choose
dimension mass M . Kinematically similar systems A and B (with length and time scale
factors sL and sT ) are also dynamically similar if there is a �xed scale factor for mass sM
relating corresponding masses. Speci�cally, if m is the mass contained in a certain volume
V at time t in system A , then the mass m0 contained in the corresponding volume V 0 at the
corresponding time t0 in system B are related by

m0 = sMm. (10)

We refer to magnitudes with dimensions derived from L, M , and T as dynamic magnitudes.
Three examples with their dimensions and scale factors are
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1. density ML�3; sMs�3L ,

2. force MLT�2; sMsLs�2T , and

3. pressure ML�1T�2; sMs�1L s
�2
T .

2.4 Creation of Dynamically Similar Systems

Suppose all the dynamic magnitudes in system A are determined by certain given or inde-
pendent magnitudes (under our control) and certain physical laws. We then create a new
system B by scaling the independent magnitudes of system A according to their dimension
and a set of scale factors sL, sM , and sT . If system B is governed by the same physical
laws, then system B will be dynamically similar to system A. In particular, if system A is
a working model in which we can measure various magnitudes, then we can calculate the
corresponding magnitudes in system B by scaling the measured magnitudes in accordance
with their dimensions and the same scale factors sL, sM , and sT .[2]

3 Turbine Model Testing

To see how dynamic similarity applies to turbine characteristics, consider the case in which
a model turbine operating with

� �uid density � (dimension ML�3),

� pressure di¤erence p (dimension ML�1T�2), and

� shaft speed ! (dimension T�1)

has a resulting

� discharge Q (dimension L3T�1) and

� shaft power P (dimension ML2T�3).

For any choice of positive scale factors sM , sL, and sT , we know that a prototype turbine
operating with

� �uid density sMs�3L �,
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� pressure di¤erence sMs�1L s�2T p, and

� shaft speed s�1T !

will have a resulting

� discharge s3Ls�1T Q and

� shaft power sMs2Ls�3T P .

4 Scale-Independent Turbine Characteristics

There remains a practical problem. Given a geometrically similar prototype with

1. runner diameter D2,

2. �uid density �2,

3. pressure di¤erence p2, and

4. angular shaft speed !2,

how do we locate model test data with

1. runner diameter D1,

2. �uid density �1,

3. pressure di¤erence p1, and

4. shaft speed !1

so that the prototype discharge Q2 and power P2 can be computed from the model discharge
Q1 and model power P1 using the principle of dynamic similarity?

For such a computation, we need three positive scale factors sL, sM , and sT such that

D2 = sLD1 (11)

�2 = sMs
�3
L �1 (12)

p2 = sMs
�1
L s

�2
T p1 (13)

!2 = s�1T !1: (14)
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The �rst three equations are consistent with only one choice of scale factors

sL =

�
D2

D1

�
(15)

sM =

�
D2

D1

�3�
�2
�1

�
(16)

sT =

�
D2

D1

��
�2
�1

�1=2�
p2
p1

��1=2
(17)

for length, mass, and time. All four equations are satis�ed with this choice of scale factors
if and only if

!2
!1
= s�1T =

�
D2

D1

��1�
�2
�1

��1=2�
p2
p1

�1=2
: (18)

And, provided this is the case, the operation of the model and prototype turbines will be
dynamically similar and we will have

Q2 = s
3
Ls
�1
T Q1 (19)

and
P2 = sMs

2
Ls
�3
T P1: (20)

Substituting the expressions for sL, sM , and sT (Equations 15, 16, and 17) into Equations
18, 19, and 20 and rearranging, we obtain the following: If

D2�
1=2
2 p

�1=2
2 !2 = D1�

1=2
1 p

�1=2
1 !1 (21)

then
D�2
2 �

1=2
2 p

�1=2
2 Q2 = D

�2
1 �

1=2
1 p

�1=2
1 Q1 (22)

and
D�2
2 �

1=2
2 p

�3=2
2 P2 = D

�2
1 �

1=2
1 p

�3=2
1 P1: (23)

The left and right sides of the three equations above are scale-invariant parameters for
dynamically similar turbines.[3] We will refer to them as the speed parameter

�1 =
D!

(p=�)1=2
; (24)

the discharge parameter

�2 =
Q

D2 (p=�)1=2
; (25)

and the power parameter

�3 =
P

�D2 (p=�)3=2
: (26)

If the model and prototype are operating under conditions producing the same speed para-
meter �1, then they will be dynamically similar and will have the same discharge parameter
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�2 and power parameter �3. Based on this principle, model test data is commonly summa-
rized by two curves: �2 versus �1 and �3 versus �1. To calculate the discharge and power
of a prototype, we

1. compute the speed parameter �1 of the prototype based on its runner diameter D2,
angular speed !2, pressure di¤erence p2, and �uid density �2,

2. look up the values of �2 and �3 for the same speed parameter �1 in the model test
data, and

3. compute the prototype discharge

Q2 = �2D
2
2 (p2=�2)

1=2 (27)

and power
P2 = �3�2D

2
2 (p2=�2)

3=2 . (28)

For turbines with adjustable gates, changing the gate position changes the turbine shape.
The principle of dynamic similarity only applies to geometrically similar machines. Thus we
have di¤erent curves of �2 and �3 for di¤erent gate positions.

5 Alternate Formulations

It is common to plot the e¢ ciency

� =
�3
�2

=
P

pQ
(29)

versus the speed parameter �1 instead of the power parameter �3 versus the speed parameter
�1. In the hydro industry, shaft speed N is commonly expressed in RPM and pressure p is
expressed in terms of the height H of a column of water such that

p = �gH. (30)

With these conventions, the scale invariant parameters become

�1 =
DN

(gH)1=2
(31)

�2 =
Q

D2 (gH)1=2
(32)

�3 =
P

�D2 (gH)3=2
: (33)
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In the case of hydro turbines where the �uid is water for both model and prototype, the
acceleration of gravity g and �uid density � are nearly constant. Therefore these factors are
routinely omitted to obtain simpli�ed scale-invariant parameters

N11 =
DN

H1=2
(34)

Q11 =
Q

D2H1=2
(35)

P11 =
P

D2H3=2
: (36)

The units of these parameters are somewhat confusing. They are commonly given as RPM,
ft3= s or m3= s, and horsepower or kW respectively. The equations do not have these units.
The parameters are described as the values of speed, discharge, and power for a dynamically
similar turbine with unit diameter D = 1 operating under unit head H = 1. This inter-
pretation is signi�ed by the subscript 11 and they are referred to as unit parameters. Of
course the numeric values of the parameters depend on whether H = 1 means one foot or
one meter. The virtue of the unit parameters is that they eliminate a lot of arithmetic in
relating model data to prototype operation. Here is the procedure to calculate the discharge
and power for a prototype turbine with runner diameter D turning at RPM N under a head
H.

1. Calculate N11 = DN
p
H.

2. Look up Q11 and P11 from model data presented as graphs of Q11 and P11 versus N11.

3. Calculate discharge Q = D2H1=2Q11.

4. Calculate power P = D2H3=2P11.
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